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Abstract—A smooth autonomous system of general form is considered. A global family of non-
degenerate periodic solutions by the parameter h is constructed; the period varies monotonically
on this family. The problem of stabilizing the oscillations of the reduced controlled system is
solved. A smooth autonomous control law with a parameter depending on h is applied, and
an attracting cycle is constructed. The results are concretized for an nth-order differential
equation. The relation of these results with the conclusions obtained for the reversible mechan-
ical system is established. An adaptive control scheme for the reduced conservative system is
proposed to stabilize any oscillation of the family. Some applications are presented.
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1. INTRODUCTION

Consider the problem of controlling the oscillations (periodic solutions) of an autonomous sys-
tem of general form. In the nondegenerate case, the following alternative is valid: either a cycle
(isolated oscillation) or a family of oscillations. On a family of nondegenerate oscillations, the
period monotonically depends on the family parameter h. Therefore, when stabilizing a family of
oscillations, it is natural to look for a control law with a parameter depending on h. In an adaptive
control system, the “controller automatically changes its structure or its parameters depending on
the changes of plant parameters or disturbance properties” [1, p. 108].

In this paper, we apply an autonomous control law in which the controller parameter is found
depending on the parameter h of the stabilized oscillation of the family: the controller has adaptivity.
In this sense, the control scheme is said to be adaptive.

In the example

ẍ+ ω2x = εu, u = (1−Kx2)ẋ, (1)

the control law u contains the parameter K; ω is the frequency of a linear oscillator. For ε = 0,
equation (1) admits the family of oscillations x = A cosϕ with amplitude A and energy h = ω2A2/2.
Let K = 2ω2/h∗ in (1) to stabilize the selected oscillation family with energy h = h∗. Then an
attracting cycle close to the oscillation of the linear oscillator with energy h∗ is implemented in (1).
The formula for K is valid for any oscillation of the family. An adaptive stabilization scheme is
applied.

1 This paper was written on the occasion of the Tercentenary of the Russian Academy of Sciences.
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Equation (1) is called a van der Pol oscillator. The van der Pol equation [2] is obtained from (1)
for K = 1 : in a regerative receiver, ω is tuned to the frequency of the received signal.

A linear oscillator admits a family of isochronous oscillations. In a mathematical pendulum, the
oscillation period is a monotonic function of the family parameter. Such a family of oscillations is
called nondegenerate [3].

When studying oscillations in a multidimensional autonomous system, it is necessary to describe
the entire set of nondegenerate oscillations. The problem of the global family of oscillations arises:
existence, construction, and properties. Besides the interest for the theory of ordinary differential
equations (ODEs), the knowledge of the global family ensures the complete solution of the control
problem.

The main point about the global family is the possibility of continuing any local nondegenerate
family of periodic solutions to the global family on which the family parameter will take all possible
values for the solutions of the family. The global family for a particular case was constructed in [3].
An adaptive stabilization scheme for the oscillations of a reduced system on the plane was presented
in [3]: an attracting cycle was constructed.

A global family is described by a reduced system whose dimension coincides with the dimension k
of this family. In the general case (a system of n differential equations), we have 1 < k � n. The
existence of the global family, the isolation of the reduced system, and the design of an adaptive
oscillation stabilization scheme for this system are considered below. The results are concretized
for an nth-order differential equation. Also, we relate these conclusions to the results for systems
possessing the properties of reversibility and conservativeness.

Some applications are presented. The three-body problem was introduced by L. Euler in 1764
when studying the motion of the Moon; it was published later in [4]. We demonstrate the con-
struction of the global families of periodic orbits in this problem and apply the adaptive scheme
for orbital stabilization. V.V. Beletskii’s problem [5] describes the oscillations of a satellite in the
elliptical orbit plane. In a particular case (a circular orbit), we stabilize any oscillation of the
satellite using the adaptive control scheme.

2. GLOBAL FAMILY THEOREM

Consider a smooth autonomous equation of the form

ż = Z(z), z ∈ Rn. (2)

Let z(z01 , . . . , z
0
n, t) denote the general solution of this equation, where z0 = (z01 , . . . , z

0
n) is an initial

point (for t = 0). A T -periodic solution of system (2) exists under the necessary and sufficient
condition

f ≡ z(z01 , . . . , z
0
n, T )− z0 = 0. (3)

Assume that equation (3) has a solution z0 = z∗, T = T ∗, not coinciding with the trivial equi-
librium: Z(z∗) = 0. Then equation (3) admits a family of solutions in the parameter γ :

z0 = z∗(γ), T = T ∗, (4)

where γ is the shift of the initial time instant along the trajectory. In addition, the rank Ra of
the functional (Jacobi) matrix Af for the function f with the parameter T satisfies the inequality
Ra � n− 1 at the point z∗ for T = T ∗.

The case Ra = n− 1 is said to be nondegenerate for a periodic solution; for details, see [3]. The
case Ra = n− 1 will be considered below.
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In the nondegenerate case, the matrix Af has a simple zero eigenvalue or a kth-order Jordan
block of zero eigenvalues, 1 < k � n. In the first situation, equation (3) admits a unique solution
of the form (4). Therefore, the autonomous equation (2) admits an isolated periodic solution, i.e.,
a cycle with the period T ∗.

The second situation is called the case of a family of periodic solutions.

In the neighborhood of the solution of equation (4), we introduce the linear system

ξs ≡ ∂fs
∂z01

dz01 + . . . +
∂fs
∂z0n

dz0n +
∂fs
∂T

dT = 0, s = 1, . . . , n,

f = (f1, . . . , fn),

(5)

which is valid for arbitrary γ. The matrix Af in (5) has rank Ra = n− 1. The cycle is obtained
from the simple zero eigenvalue: in (5) we have the solution dz1(γ) = . . . = dzn(γ) = 0, dT = 0.

The family case is implemented under dT = 0. The derivatives

dfs
dT

= Zs(z
∗(γ)), s = 1, . . . , n,

are calculated at the point (4) and ensure that the rank of the augmented matrix in (5) is equal to
the number (n− 1). The values dz01(γ), . . . , dz

0
k(γ) are computed from (5) as linear functions of dT.

Varying dT yields a family of solutions. The period T changes from solution to solution, i.e., it is
a function of the scalar parameter h : z0 = z0(γ, h), T = T (h). Thus, the local h-family is found
from system (5). The derivative is T ′(h∗) = 0 for the parameter value h = h∗. Therefore, on the
family, the period T (h) changes monotonically together with the family parameter h. In this sense,
the h-family is nondegenerate [3].

Definition 1. A family of periodic solutions of equation (2) is said to be nondegenerate if the
period T (h) on this family monotonically depends on the parameter h.

According to the presentation, the point z0 = z∗ of a periodic solution of equation (2) has the
property of leading to a nondegenerate family of periodic solutions. The reference periodic solution
also belongs to the family. In this sense, it is said to be nondegenerate. Any periodic solution of a
nondegenerate family is also nondegenerate.

Definition 2. A solution belonging to a nondegenerate family of periodic solutions called a non-
degenerate solution.

A nondegenerate periodic solution can be continued in the period T or, equivalently, in the
family parameter h. This is called local extensibility property. A nondegenerate periodic solution is
continued simultaneously toward increasing and decreasing the period.

The concept of a global family of periodic solutions was introduced in [3].

Definition 3. A nondegenerate family of periodic solutions on which the parameter h takes all
possible values for the family solutions is called a global family.

When reducing the matrix Af to the canonical form, system (5) decomposes into two subsystems;
one subsystem, with a zero kth-order Jordan block, leads to a family of periodic solutions, whereas
the other subsystem has a zero solution in (5). Therefore, in the new variables, a family of periodic
solutions is described by k variables. In the phase space, a global family is represented by a
connected k-dimensional set of points.

In the case Ra = n− 1 (nondegenerate for a periodic solution), we have the following result.

Theorem 1. Assume that equation (2) admits a nondegenerate periodic solution. Then it extends
in the period T to a global family Σ. On Σ the period T (h) monotonically depends on the family
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parameter h. The family Σ fills the global domain Σ̂; Σ is described by a reduced system of order k.
For the points of the domain Σ̂, the rank is Ra = n−1; on its boundary ∂Σ̂, the condition Ra = n−1
fails.

Proof. A nondegenerate periodic solution has local extensibility. This property is independent
of the dimension k of the Jordan block with zero eigenvalues of the matrix Af . Therefore, the
proof of Theorem 1 coincides, within the dimension of the zero kth-order Jordan block and minor
editorial changes, with that of [3, Theorem 1] for the case k = 2. The reduced system is described
by a kth-order system.

Remark 1. When approaching the boundary ∂Σ̂, the derivative T ′(h) may tend to zero, infinity,
or cease to exist.

Remark 2. System (2) may simultaneously have several global families of periodic solutions
with the same k. Also, there are no obstacles to the simultaneous existence of global families with
different k.

3. ADAPTIVE CONTROL SCHEME FOR THE REDUCED SYSTEM

According to Theorem 1, the global family of periodic solutions Σ = {ϕs(h, t)} can be described
by a reduced system in Rk :

ẋs = Xs(x1, . . . , xk), s = 1, . . . , k. (6)

The problem is to stabilize any T (h)-periodic oscillation ϕ from the family Σ chosen by the value
of the parameter h. We apply a control law containing the parameter K, assigning the value of K
depending on h : K = K(h). The control law is defined by a smooth function F of the variables
x1, . . . , xk that acts with a small gain ε of the controller signal. In the controlled system

ẋs = Xs(x1, . . . , xk) + εFs, s = 1, . . . , k, (7)

and the stabilized oscillation will be ε-close to the oscillation of system (7). The parameter K in the
control law ensures the existence of a periodic solution in (7) identically in h. Then the oscillation
with the parameter h = h∗ is stabilized by substituting into the control function F the number
K = K(h∗) for which dK(h∗)/dh = 0. In the special case k = 2, the adaptive control scheme was
implemented in [3].

The stabilization problem is posed in small. It is solved by constructing an attracting cycle.
Therefore, we will find existence conditions for such a cycle and calculate its characteristic exponent
(CE). These problems are solved in the neighborhood of the reference (basic) oscillation x = ϕ(h∗, t)
by a linearized system. The control value Fs is computed on the reference oscillation. The deviations
from the reference oscillation and the number ε are considered of the same order.

Letting Δs = xs − ϕs, s = 1, . . . , k, in system (7), we write equations for the variables Δs. In
the linear approximation with respect to Δs, the resulting equations contain the variations of δxs.
Then it is necessary to analyze the periodic solution of the controlled system

δẋs = ps1δx1 + . . .+ pskδxk + εFs, s = 1, . . . , k. (8)

System (8) coincides with the system derived from (7) for the increments Δs within the nonlinear
terms. The cycle of system (8) is obtained from the linearized system (7) in the neighborhood of
the reference oscillation.

On the manifold Σ̂ the variables

δxj =
∂xj
∂h

, j = 1, . . . , k,
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are functions of h and t. We denote by {y1, . . . , yk} the solution of the adjoint system. Then the
expression

y1δx1 + . . .+ ykδxk = const (9)

is the first integral of the linear homogeneous system in (8). The set of these integrals are used to
reduce the homogeneous linear system with periodic coefficients in (8) to a system with constant
coefficients. In the case of the zero kth-order Jordan block, we obtain the equations

u̇1 = 0, u̇2 = −u1, . . . , u̇k = −uk−1. (10)

All solutions of the adjoint system have the form

ys1 = ψs1,

ys2 = tψs1 + ψs2,

. . .

ysk =
tk−1ψs1

k − 1
+ . . .+ tψs,k−1 + ψsk,

(11)

where ψsj are functions with the period T (h). Then the Lyapunov transform is given by

uj = ψ1jδx1 + . . . + ψkjδxk, j = 1, . . . , k, (12)

with a nonsingular periodic matrix ||ψsj(h, t)||. Hence, the corresponding derivatives are

u̇j = ψ1j
dδx1
dt

+ . . .+ ψkj
dδxk
dt

+ ψ̇1jδx1 + . . . + ψ̇kjδxk, j = 1, . . . , k.

As a result, the controlled system (8) in the variables uj differs from (10) by the inhomogeneous
terms:

u̇1 = ε(ψ11F1 + . . .+ ψk1Fk) = εF̂ ,

u̇j = −uj−1 + ε(ψ1jF1 + . . .+ ψkjFk), j = 2, . . . , k.
(13)

For T = T ∗, system (13) defines a mapping t : 0 → T ∗ on the manifold Σ̂. For ε = 0, the mapping
admits a zero fixed point. Given ε = 0, a fixed point exists under the necessary conditions in the
form of the amplitude equation

I(h) ≡
T ∗∫
0

F̂ dt =

T ∗∫
0

k∑
s=1

ψs1Fsdt = 0; (14)

for details, see [6, Ch. VI, § 8, p. 413, §9, p. 417]). Equation (14) is with respect to the unknown h,
with the function F̂ containing the parameter K = K(h∗) along with h. A particular form of (14)
is provided in the example below for (21). The simple root h = h∗ of the amplitude equation (14)
corresponds to an isolated periodic solution of system (13), hence, that of system (8). System (8)
describes the cycle of system (7) within the nonlinear terms (in the neighborhood of the oscillation
under study). Therefore, the cycle of system (7) is derived from the amplitude equation (14). The
inequality dI(h∗)/dh = 0 is a sufficient condition for the existence of this cycle.

The CE of the cycle are found from the equations in variations. In the case of the zero kth-order
Jordan block, a single number α is calculated to determine the CE [6, Ch. 3, § 11]. It shows
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the change in the variation over the period. The variations are found as the derivatives of the
functions us with respect to the parameter h.

The first equation of system (13) has the form

u̇1(h
∗, t) = ε

[
F̂∗ +

k∑
s=1

(
∂F̂

∂xs

∂xs
∂h

)
∗
Δh+ . . .

]
,

where the asterisk denotes the values calculated for h = h∗. Then the increment Δh satisfies

d(Δu1)

dt
= ε

[
k∑

s=1

(
∂F̂

∂xs

∂xs
∂h

)
∗
Δh+ . . .

]
,

and we obtain the following equation for the derivative:

d

dt

(
∂u1
∂h

)
∗
= ε

k∑
s=1

(
∂F̂

∂xs

∂xs
∂h

)
∗
= ε

∂F̂ (h∗, t)
∂h

.

The change in the derivative over the period leads to the CE of the cycle

(
∂u1
∂h

)
∗
=

ε

T ∗

T ∗∫
0

∂

(
k∑

s=1
ψs(h

∗, t)Fs(h
∗, t)

)

∂h
dt.

Thus, the CE α of the cycle is given by

α =
ε

T ∗

T ∗∫
0

∂F̂ (h∗, t)
∂h

dt. (15)

Theorem 2. For the reduced controlled system (7), the cycle stabilization problem is solved for
any chosen parameter value h = h∗ by a smooth control function F acting with a small gain of
the controller signal. A sufficient condition for cycle stabilization is the inequality dI(h∗)/dh < 0
imposed on the root of the amplitude equation (14). The characteristic exponent of the cycle is
calculated using formula (15).

Theorem 2 is applied to all oscillations of the global family. The control law contains the param-
eter h, is found from the amplitude equation holding identically in h, and is designed by generalizing
the universal control from [7]. In the case k = 2, several particular control laws satisfying Theorem 2
were given in [3]. For the nth-order equation, the adaptive control law is presented in Section 4.

Remark 3. According to Theorem 2, the cycle stabilization problem is solved by the control
function F̂ . Therefore, we can choose in system (8), e.g., the control function F̂ with Fs ≡ 0; s =
2, . . . , k. For the second-order equation (k = 2), the control function is applied with F1 ≡ 0, F2 = 0.

4. nTH-ORDER DIFFERENTIAL EQUATION

An nth-order Jordan block with the zero eigenvalues of the matrix Af is the only case for a
single nth-order differential equation

x(n) = X(x, x′, . . . , x(n−1)), (16)

where x(j) denotes the jth derivative of x.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024
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Indeed, equation (16) turns into the system

ẋs = xs+1, s = 1, . . . , n− 1,

ẋn = X(x1, . . . , xn),
(17)

where the functions in (2) are Xs = xs+1, s = 1, . . . , n− 1. Therefore, due to equation (3), the
matrix Af represents an nth-order Jordan block with zero eigenvalues.

Thus, if system (17) has a nondegenerate periodic solution, it belongs to the global family of
T (h)-periodic solutions on which the period monotonically depends on the parameter h (Theo-
rem 1). The solutions are defined in the space (x, x′, . . . , x(n−1)), and the periodic solution of
equation (16) is denoted by x = ϕ(h, t).

Let us formulate the following problem: it is required to stabilize the solution of equation (16)
selected by a value h = h∗. For this purpose, we consider system (7) with a vector control function
F = (F1, . . . , Fn) satisfying the amplitude equation (14) with a simple root. Theorem 2 is applied
with a scalar control function F̂ formed from the coordinates of the vector F. In the particular case
of system (7) (i.e., equations (17)), we take F1 = . . . = Fn−1 = 0 and the explicit-form function Fn.
As a result, the controlled system is described by

x(n) = X(x, x′, . . . , x(n−1)) + σε[1−Kx2]x′, (18)

where the control value Fn acts with a small gain and the number σ is 1 or (−1). The coefficient K
is assigned depending on the value of the parameter h : K = K(h). To stabilize the oscillation with
h = h∗, we let K = K(h∗).

Thus, the adaptive control scheme is designed.

The control law applied in (18) is an analog of the universal control proposed in [7]. It satisfies
the amplitude equation (14), which has a simple root for almost all points of the family in the
parameter h.

The function K(h) is obtained from the amplitude equation (14) holding identically in h. This
function is calculated using the formula

K(h) =

T (h)∫
0

ψnn(h, t)ϕ
′(h, t)dt

T (h)∫
0

ϕ2(h, t)ψnn(h, t)ϕ′(h, t)dt
;

the function ψnn(h, t) is taken from (12). Then we have

dI(h∗)
dh

= χν(h∗), χ =
dK(h∗)

dh
, ν(h∗) =

T (h∗)∫
0

ψnn(h
∗, t)ϕ′(h∗, t)dt (19)

for the function I(h) (14) at the point h = h∗.

Theorem 3. If the nth-order differential equation admits a nondegenerate periodic solution, it
belongs to the global family in the scalar parameter h. The solution with the parameter value h = h∗,
χν = 0, is stabilized by the adaptive control scheme (18) with K = K(h∗): the sign of the number σ
ensures the attraction to the cycle.

Remark 4. By writing equation (16) as (17) and applying the adaptive control system of Sec-
tion 4 to (17), we establish the attraction to the cycle in the space (x, x′, . . . , x(n−1)) in equation (18).
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5. SYMMETRIC PERIODIC MOTIONS

An autonomous system of the general form (2) may have additional properties such as conserva-
tiveness or reversibility, be written in the Hamiltonian form, etc. In this case, Theorem 1 remains
valid as well. However, for some systems, this theorem needs to be clarified.

In what follows, the concept of a global family of periodic solutions of ODEs will be concretized
for symmetric periodic motions.

A reversible dynamic system with the phase vector z and a nondegenerate mapping G has
spatiotemporal symmetry in the sense of invariance with respect to the transformation (z, t) →
(Gz,−t). It describes models in various fields of knowledge; see the survey in [8]. In the case

G =

∥∥∥∥∥ Il 0
0 −In

∥∥∥∥∥ , l � n

(Ij is an identity matrix of dimensions (j × j)), we obtain a reversible mechanical system [9]. The
phase space of this system is described by vectors u and v such that dimu = l, dim v = n, and
the symmetry transformation is (u, v, t) → (u,−v,−t). In mechanics, u and v are usually taken
to be the vectors of generalized coordinates (quasi-coordinates) and generalized velocities (quasi-
velocities), respectively. The set M = {u, v : v = 0} is called the fixed set of a reversible mechanical
system.

The phase portrait of a reversible mechanical system is symmetric with respect to the set M. The
trajectories intersecting M are called symmetric. The twofold intersection of the set by a trajectory
leads to a symmetric periodic motion (SPM). On an SPM of period T/2, the trajectory intersects
the set M at the time instants t = 0, T/2. An SPM of period T/2 exists under the necessary and
sufficient conditions

vs(u
0
1, . . . , u

0
l , τ) = 0, τ = 0, T/2; s = 1, . . . , n, (20)

where u0 ∈ M is the value on the SPM. Let us introduce the matrix

A(u0, T/2) = ||asj || =
∥∥∥∥∥ ∂vs(u

0
1, . . . , u

0
l , T/2)

∂u0j

∥∥∥∥∥ .
Definition 4. The case detA(u0, T/2) = 0 is said to be nondegenerate for an SPM, and the latter

is called a nondegenerate SPM.

An SPM is a periodic solution. By Definition 4, the nondegenerate SPMs form a family on
which the period varies monotonically: Definition 1 is valid for it. Inequality (20) also holds on the
period. Conditions (3) written for an SPM are satisfied identically in the (l − n) values u0j . Hence,
the matrix Af in (5) contains (l − n) simple zero eigenvalues. Therefore, the nondegeneracy con-
dition rankAf = Ra = l + n− 1 introduced for the general-form system (2) is true for a reversible
mechanical system only if l = n. Accordingly, Theorem 1 applies to an SPM only in the case l = n.

On the other hand, without the nondegeneracy condition Ra = l + n− 1 for a reversible mechan-
ical system, Definition 3 remains valid for an SPM in the general situation. Therefore, Theorem 1
on the global family is true in the following formulation.

Theorem 4. A nondegenerate SPM of a reversible mechanical system always extends to a global
family of nondegenerate SPMs described by a reduced reversible mechanical system with the vector
u ∈ Rl−n and scalar v as the variables.

The most complete proof of Theorem 4 was given in [10]. An adaptive oscillation stabilization
scheme for a reduced reversible mechanical system was designed in [11].

Theorem 4 settles an important case of SPMs, which is degenerate for Theorem 1.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024
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6. CONSERVATIVE SYSTEM

For definiteness, assume that a conservative system is given by the Lagrange equations of the
second kind and subjected to the action of potential forces. Then it is described by a system of
second-order equations. Let q and q̇ denote the coordinate and velocity vectors, respectively. Then
the dynamic equations are invariant with respect to the change of variables (q, q̇, t) → (q, q̇,−t).
Therefore, a conservative system belongs to the class of reversible mechanical systems with the
coinciding dimensions of the vectors q and q̇. The equilibria of the system belong to its fixed set.
The nondegenerate equilibria are divided into centers and saddles. According to Lyapunov’s center
theorem [12], a local family of nonlinear periodic motions (a Lyapunov family) adjoins to a center.
For such a family, the zero Jordan block has dimension k = 2. Due to the energy integral present
in the system, the period on the family will be a monotonic function of the constant energy h.
Therefore, the Lyapunov family consists of nondegenerate periodic motions. By Theorem 1, it
extends to a global family of nondegenerate periodic solutions, with the reduced system containing
two first-order equations. The same conclusion follows from Theorem 4, but the latter specifies
that the reduced system is a reversible mechanical system. Due to the conservativeness of the
original system, we obtain a reduced conservative (RCC) system with one degree of freedom;
see [13, Lemma A.1].

Thus, the Lyapunov families of a conservative system always extend to global families of sym-
metric periodic motions: the global Lyapunov center theorem is valid, first derived in [3].

A conservative system can be described by equations not belonging to the class of reversible
mechanical systems. In this case, applying Theorem 1 to the system also yields an RCC system:
the energy integral is preserved.

For an RCC system, a controlled system stabilizing almost all oscillations was constructed
in [7, Theorem 1]. As it turns out, all oscillations of the family are stabilized in the reduced
conservative system.

Consider a controlled RCC system of the form

ẍ+ f(x) = εσ(1 −Kx2)ẋ (21)

that contains a parameter K and admits, for ε = 0, the energy integral

ẋ2

2
+

∫
f(x)dx = h(const).

(Here, σ takes value 1 or (−1).) By assumption, for ε = 0 system (21) admits a family of nonde-
generate periodic motions x = ϕ(h, t).

An attracting cycle close to an oscillation with a system parameter h = h∗ exists under the
necessary and sufficient conditions

I(h) ≡
T (h∗)∫
0

[1−K(h∗)ϕ2(h, t)]ϕ̇(h, t)dt = 0

(the simple root of the amplitude equation). The function K(h) is calculated using the formula

K(h) =

T (h)∫
0

ϕ̇2(h, t)dt

T (h)∫
0

ϕ2(h, t)ϕ̇2(h, t)dt

, (22)

and the inequality dK(h∗)/dh = 0 ensures the simple root of the amplitude equation.
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Theorem 5. System (21) with the parameter K stabilizes any oscillation close to that of a con-
servative system with one degree of freedom.

Proof. With the new time variable τ = t/T (h), the oscillation period becomes independent of h
and equal to 1, whereas formula (22) is written as

K(h) =

1∫
0
z2(τ)dτ

1∫
0
ϕ2(h, T (h)τ)z2(τ)dτ

.

On the family of oscillations, the function ϕ2(h, t) with fixed t monotonically depends on h. This
is true for any family, nondegenerate or degenerate. Hence, the function K(h) is monotonic on the
family of oscillations of a conservative system.

Thus, the sufficient condition in [7, Theorem 1] always holds for any family (nondegenerate and
degenerate), and the proof of Theorem 5 is complete.

Remark 5. For a degenerate family, the function K(h) is calculated in explicit form; for details,
see [13].

Remark 6. According to Theorem 5, the adaptive scheme provides a complete solution of the
stabilization problem for any oscillation from the family of an RCC system.

Remark 7. The result remains valid for a conservative system with an arbitrary number of
degrees of freedom.

7. APPLICATIONS

1. The bounded planar three-body problem is described by the equations [14]

ẍ− 2ẏ =
∂Ω

∂x
, ÿ + 2ẋ =

∂Ω

∂y
,

Ω =
1

2
(x2 + y2) +

1− μ

r0
+

μ

r1
, Ω(x, y) = Ω(x,−y),

r20 = (x+ μ)2 + y2, r21 = (x− 1 + μ)2 + y2.

(23)

They contain a single dimensionless mass parameter μ.

System (23) admits an energy integral. Due to its invariance with respect to the transformation

{x, y, ẋ, ẏ, t} → {x,−y,−ẋ, ẏ,−t},

system (23) also belongs to the class of reversible mechanical systems.

The relative equilibria (libration points) are found from the equations

∂Ω

∂x
= 0,

∂Ω

∂y
= 0.

The problem admits five libration points Li, i = 1, . . . , 5. In addition, L1, L2, and L3 lie on the
abscissa axis x, whereas the points L4 and L5 are located symmetrically with respect to the axis x
and form equilateral triangles with the main bodies on the axis x.

The points L1, L2, and L3 belong to the equilibria of a reversible mechanical system. They are
adjoined by a symmetric Lyapunov family for which the matrix Af (Section 2) has a zero second-
order Jordan block. Therefore, Theorem 4 can be applied here. The global family is described
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by an conservative system with one degree of freedom and symmetric orbits. By Theorem 5, the
orbital stabilization problem of any orbit is solved by the adaptive control scheme.

Theorem 1 can be applied to the points L4 and L5. System (23) is conservative, so the global
family is described by an RCC system. Any orbit of the global family is stabilized using Theorem 5.

The bounded three-body problem is basic in the theory of orbits [15]. In the theory of controlled
orbital motion, the problem of orbital stabilization is solved. The corresponding results will be
considered in detail in a separate paper.

2. Stabilization of satellite oscillations. Under gravitational forces, the motion of a satellite
in an orbital plane is described by V.V. Beletskii’s equation [5]. Consider a particular case of a
circular orbit. The corresponding Beletskii equation takes the form

α̈+ μ sinα cosα = 0, α̇ =
dα

dv
, (24)

where μ is the inertial parameter (||μ| � 3); α is the angle between the radius vector of the center of
mass and the main central axis of inertia of the satellite in the orbital plane; v is the true anomaly
chosen as the independent variable. As a result, we obtain the mathematical pendulum equation

ÿ + μ sin y = 0, μ > 0, y = 2α,

or

ÿ + |μ| sin y = 0, μ < 0, y = 2α + π.

The satellite oscillations form a family from an initial deviation in the angle y, and the period T (h)
increases on this family.

A mechatronic oscillation stabilization scheme with a van der Pol oscillator was proposed in [13].
The mechatronic scheme is adaptive in the sense of this paper.

According to Theorem 5, any oscillation is locally stabilized using the adaptive scheme

ẍ+ |μ| sinx = εσ(1 −Kx2)ẋ,

where x = 2α and μ > 0 or x = 2α+ π and μ < 0, and σ = 1. Here, the van der Pol oscillator is
not applied.

Note that for the problem of rotational motion of a satellite, an equilibrium stabilization scheme
was proposed, e.g., in [16].

8. CONCLUSIONS

In the nondegenerate case, the periodic solution of an autonomous system of general form can be
a cycle or belong to a family. For a cycle, the Jacobi matrix has one zero eigenvalue, whereas a family
corresponds to a zero kth-order Jordan block. For k = 2, the case usually considered, a global family
of nondegenerate periodic solutions was constructed in [3]; this family is described by a reduced
second-order system. The results are valid for the general case of dimension 1 < k � n, where n
denotes the dimension of the autonomous system. An adaptive oscillation stabilization scheme
is designed for the reduced system of order k. An autonomous control with the parameter K(h)
depending on the global family parameter h is applied. It represents a generalization of the universal
control [7] to a system of arbitrary order; the value of h separates an oscillation in the global family.
Stabilization is achieved by implementing an attracting cycle.

For an nth-order differential equation in the variable x, the reduced system coincides with
the original one. The periodic solution is stabilized by a control law that represents nonlinear
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dissipation, being linear in velocity, acting in the neighborhood of the cycle, containing a parameter,
and ensuring attraction to the cycle in the space (x, x′, . . . , x(n−1)).

Similar results are known for symmetric periodic motions of reversible mechanical systems [10].
In the spatiotemporal symmetry case, the Jacobi matrix admits zero eigenvalues: simple ones and
those of a single 2nd-order Jordan block. This block corresponds to a conservative system. The
stabilization problem of family oscillations finds an exhaustive solution for the conservative system
with one degree of freedom: the stabilization conditions of the selected oscillation are automatically
satisfied in the controlled system.
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